
- ホーム >
- 高校生公開講座 >
- 女子中高生理系進学推進セミナー >
- これも数学!?結び目理論 >
- 授業ホーム




開講部局:男女共同参画室
川村友美 准教授
これも数学!?結び目理論
授業時間: | 2008年度公開講座 |
対象者: | 高校生と保護者 |
授業の内容
黒板に書かれた二つの「結び目」の図。片方はほどけて一本の紐に戻る“蝶結び”で、もう片方は結び目ができる“かた結び”です。
紐を使わずにこの二つを区別するにはどうしたらよいでしょうか?
数学では、例えば次の定理を使ってこの二つを区別します。
定理:「次の色分けのルールに従って色を塗り分けた時、ほどける結び目の図は1色しか使えない」
色分けのルール:使う色は三色。「結び目」図で線が交わるところは、(1)三色で塗り分けるか、(2)一色だけで塗るかのどちらかにしなければならない。
この定理を証明するには、大学で何年も勉強する必要があります。ここでは証明は省略し、実際に塗り分けてみることにしましょう。このように(図)、かた結びの方は三色で塗り分けられますが、蝶結びの方は一色でしか塗れません。数学を使えば、この二つの結び目の一方がほどけ、もう一方はほどけないということがよく分かるようになりました。しかし、他の結び目もこの定理ですべて分類できるかというと、残念ながらこの定理は万能ではありません。例えばこの結び目(図)は、ほどけないことが分かっていますが、一色でしかません。
結び目理論は、トポロジー(位相幾何学)という分野の中に含まれています。トポロジーでは、○や□を同じものと考えるような不思議な世界が研究の対象となっています。

最終更新日:2010年01月29日
最終更新日の時点の講義内容で公開を行っております。
最新年度の講義と内容が異なる可能性がありますのでご注意ください。
最新年度の講義と内容が異なる可能性がありますのでご注意ください。