
Chapter 6

Pseudodifferential calculus

The aim of this chapter is to stress the link between the algebraic framework intro-
duced so far, and the usual pseudodifferential calculus. The first section is related to
the content of Chapter 4, and is based on [MPR05, Sec. 1.1]. It consists mainly in an
introduction to the Weyl calculus and to the corresponding Moyal product. The subse-
quent sections are slightly more general and closely related to Chapter 5. The arguments
are borrowed from [MPR05, Sec. 3], and the mentioned link is clearly established.

6.1 The Weyl calculus

In section 4.1 we have seen how to define multiplication operators ϕ(X) and convolution
operators ϕ(D) on the Hilbert space H := L2(Rd). A natural question is how to define
a more general operator f(X,D) on L2(Rd) for a function f : Rd × Rd → C.

This can be seen as the problem of constructing a functional calculus f 7→ f(X,D)
for the family X1, . . . , Xd, D1, . . . , Dd of 2d self-adjoint, non-commuting operators. One
also would like to define a multiplication (f, g) 7→ f ◦ g satisfying (f ◦ g)(X,D) =
f(X,D)g(X,D) as well as an involution f → f ◦ leading to f ◦(X,D) = f(X,D)∗. The
deviation of ◦ from pointwise multiplication is imputable to the fact that X and D do
not commute.

The solution of these problems is called the Weyl calculus, or simply the pseudod-
ifferential calculus. In order to define it, let us set Ξ := Rd × R̂d, which corresponds
to the direct product of a locally compact abelian group G and of its dual group Ĝ.
Elements of Ξ will be denoted by x = (x, ξ), y = (y, η) and z = (z, ζ). We also set

σ(x, y) := σ
(
(x, ξ), (y, η)

)
= y · ξ − x · η

for the standard symplectic form on Ξ. The prescription for f(X,D) ≡ Op(f) with
f : Ξ→ C is then defined for u ∈ H and x ∈ Rd by

[Op(f)u](x) :=
1

(2π)d

∫
Rd

∫
R̂d
ei(x−y)·ηf

(
x+ y

2
, η

)
u(y)dydη, (6.1.1)
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the involution is f ◦(x) := f(x) and the multiplication (called the Moyal product) is

(f ◦ g)(x) :=
4d

(2π)2d

∫
Ξ

∫
Ξ

e−2iσ(x−y,x−z)f(y)g(z)dydz. (6.1.2)

Obviously, these formulas must be taken with some care: for many symbols f and g
they need a suitable reinterpretation. Also, the normalization factors should always be
checked once again, since they mainly depend on the conventions of each author.

Exercise 6.1.1. Check that if f(x, ξ) = f(ξ) (f is independent of x), then Op(f) =
f(D), while if f(x, ξ) = f(x) (f is independent of ξ), then Op(f) = f(X).

Beside the encouraging results contained in the previous exercise, let us try to show
where all the above formulas come from. We consider the strongly continuous unitary
maps Rd 3 x 7→ Ux ∈ U (H) and R̂d 3 ξ 7→ Vξ := e−iX·ξ ∈ U (H), acting on H as

[Uxu](y) = u(y + x) and [Vξu](y) = e−iy·ξ u(y), u ∈ H, y ∈ Rd.

These operators satisfy the Weyl form of the canonical commutation relations

UxVξ = e−ix·ξ VξUx, x ∈ Rd, ξ ∈ R̂d, (6.1.3)

as well as the identities UxUx′ = Ux′Ux and VξVξ′ = Vξ′Vξ for x, x′ ∈ Rd and ξ, ξ′ ∈ R̂d.
These can be considered as a reformulation of the content of Exercise 4.1.3 in terms of
bounded operators.

A convenient way to condense the maps U and V in a single one is to define the
Schrödinger Weyl system {W (x, ξ) | x ∈ Rd, ξ ∈ R̂d} by

W (x) ≡ W (x, ξ) := e
i
2
x·ξ UxVξ = e−

i
2
x·ξ VξUx, (6.1.4)

which satisfies the relation W (x)W (y) = e
i
2
σ(x,y) W (x+y) for any x, y ∈ Ξ. This equality

encodes all the commutation relations between the basic operators X and D. Explicitly,
the action of W on u ∈ H is given by

[W (x, ξ)u](y) = e−i(
1
2
x+y)·ξ u(y + x), x, y ∈ Rd, ξ ∈ R̂d. (6.1.5)

Now, recall that for a family of m commuting self-adjoint operators S1, . . . , Sm one
usually defines a functional calculus by the formula f(S) := 1

(2π)m/2

∫
Rm f̌(t)e−it·Sdt,

where t · S = t1S1 + . . . + tmSm and f̌ is the inverse Fourier transform of f , see
Remark 1.7.13 for a simplified version of this equality. The formula (6.1.1) can be
obtained by a similar computation. For that purpose, let us define the symplectic Fourier
transformation FΞ : S ′(Ξ)→ S ′(Ξ) by

(FΞf)(x) :=
1

(2π)d

∫
Ξ

eiσ(x,y)f(y)dy.
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Now, for any function f : Ξ→ C belonging to the Schwartz space S(Ξ), we set

Op(f) :=
1

(2π)d

∫
Ξ

(F−1
Ξ f)(x)W (x)dx. (6.1.6)

By using (6.1.5), one gets formula (6.1.1). Then it is easy to verify that the relation
Op(f)Op(g) = Op(f ◦g) holds for f, g ∈ S(Ξ) if one uses the Moyal product introduced
in (6.1.2).

Exercise 6.1.2. Check that the above statements are correct, and in particular that the
normalization factors are suitably chosen.

6.2 Generalized pseudodifferential algebras

We have introduced in Section 5.4 the standard twisted crossed products (C , G, θ, ω), as
well as their family of Schrödinger representations (H, π, Uλ) with H = L2(G), defined
by pseudo-trivializations of the 2-cocycle ω. We shall now observe that by a partial
Fourier transformation, we get from these data a sort of pseudodifferential calculus.
More precisely, certain classes of functions on G × Ĝ will be organised in C∗-algebras
with a natural involution and a product involving ω and generalizing the Moyal product
introduced in (6.1.2). The composition between the partial Fourier transformation and
the Schrödinger representation will lead to a rule of assigning operators to symbols
belonging to these C∗-algebras.

Let us consider the locally compact abelian group G and its dual group Ĝ endowed
with normalized Haar measures in such a way that the Fourier transformations

FG : L1(G)→ C0(Ĝ), (FG b) (ξ) =

∫
G

ξ(x)b(x)dx

and

FG : L1(G)→ C0(Ĝ),
(
FG b

)
(ξ) =

∫
G

ξ(x)b(x)dx

induce unitary maps from L2(G) to L2(Ĝ). The inverses of these maps act on L2(Ĝ) ∩
L1(Ĝ) as

(
FĜ c

)
(x) =

∫
Ĝ
ξ(x)c(ξ)dξ and (FĜ c) (x) =

∫
Ĝ
ξ(x)c(ξ)dξ.

Let us now consider the standard twisted C∗-dynamical system (C , G, θ, ω). We de-
fine the mapping 1⊗FG : L1(G; C )→ C0(Ĝ; C ) by

[(
1⊗FG

)
(f)
]

(ξ) =
∫
G
ξ(x)f(x)dx

(equality in C ). We recall that L1(G)�C is a dense subspace of L1(G; C ) and observe
that

(
1⊗FG

)
(a⊗b) = a⊗

(
FG b

)
. Let us now also fix an element τ ∈ End(G). We trans-

port all the structure of the Banach ∗-algebra (L1(G; C ), ∗ωτ ,∗
ω
τ , ‖·‖1) to the correspond-

ing subset of C0(Ĝ; C ) via 1⊗FG. The space
(
1⊗FG

)
L1(G; C ) will also be a Banach

∗-algebra with a composition law ◦ωτ , an involution ◦
ω
τ and the norm ‖(1⊗F−1

G ) · ‖1. Its
enveloping C∗-algebra will be denoted by CωC ,τ . The map 1⊗FG extends canonically to

an isomorphism between C oω
θ,τG and CωC ,τ . We remark that

(
1⊗FG

)
[L1(G)� C ] is al-

ready not very explicit, since one has no direct characterization of the space FG [L1(G)].
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Concerning CωC ,τ , we do not even know if it consists entirely of C -valued distributions

on Ĝ (whenever this makes sense). However, usually one can work efficiently on suitable
dense subsets.

We deduce now the explicit form of the composition law and of the involution. Let
us simply denote 1⊗ FG by F. One gets for any f, g ∈ FL1(G; C ) (be careful with the
position of the arguments)

(f ◦ωτ g)(x; ξ) :=
(
F
[
(F−1f) ∗ωτ (F−1g)

])
(x; ξ)

=

∫
G

∫
G

∫
Ĝ

∫
Ĝ

ξ(y)η(z)ζ(y − z) f(x+ τ(z − y); η)·

· g(x+ (1− τ)z; ζ) ω(x− τy; z, y − z)dydzdηdζ

and (
f ◦

ω
τ
)

(x; ξ) :=
(
F
[(
F−1f

)∗ωτ ]) (x; ξ)

=

∫
G

∫
Ĝ

[
ξ · η−1

]
(y) ω(x− τy; y,−y)−1 f(x+ (1− 2τ)y; η)dydη.

Both expressions make sense as iterated integrals; under more stringent conditions on
f and g, the integrals will be absolutely convergent.

Exercise 6.2.1. Show that in the special case τ = 1
2
1 and ω = 1, the above formulas

correspond to the Moyal product ◦ and to the involution ◦ introduced in Section 6.1.

The constructions and formulae presented above can be given (with some slight
adaptations) for any (abelian) twisted dynamical system. However, since we are con-
sidering a standard twisted dynamical system, it means that ω is pseudo-trivial. Thus,
for any continuous function λ : G → C(G;T) such that δ1(λ) = ω, the corresponding
Schrödinger covariant representation (H, π, Uλ) gives rise to the Schrödinger representa-
tion of Coω

θ,τG that we have denoted by Repλτ in the previous chapter. As a consequence,
we get a representation of CωC ,τ just by composing with F−1; and this representation will

be denoted by Opλτ . By simple computations one obtains:

Proposition 6.2.2. (i) The representation Opλτ := Repλτ ◦ F−1 : CωC ,τ → B(H) is
faithful and acts on f ∈ FL1(G; C ) with u ∈ H and x ∈ G by the formula[
Opλτ (f)u

]
(x) =

∫
G

∫
Ĝ

η(x− y)λ(x; y − x)f
(
(1− τ)x+ τy; η

)
u(y)dydη (6.2.1)

where the right-hand side is viewed as an iterated integral.

(ii) If µ ∈ C1
(
G;C(G;T)

)
is another 1-cochain, giving a second pseudo-trivialization

of the 2-cocycle ω, then µ = δ0(c)λ for some c ∈ C(G;T) and Opλτ , Opµτ are
unitarily equivalent:

π(c−1)Opλτ (f)π(c) = Opµτ (f), ∀f ∈ CωC ,τ . (6.2.2)
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Remark 6.2.3. One can again observe that in the special case τ = 1
2
1 and with the

choice λ = 1 (absence of 2-cocycle), the formula provided in (6.2.1) corresponds to the
expression provided in (6.1.1).

Let us recall from from Section 5.2 that for different τ ’s, the C∗-algebras C oω
θ,τ G

and C ×ωθ,τ G are isomorphic, and therefore Cωθ,τ and Cωθ,τ are also isomorphic. More
precisely, recall that (mτ,τ ′f) (q;x) = f(q + (τ ′ − τ)x;x) for any x, q ∈ G and f ∈
L1(G;A). Note that this isomorphism satisfies then Opλτ ′ = Opλτ ◦mτ,τ ′ (here ◦ is simply
the composition) and thus gives the transformation of the τ -symbol of a generalized
pseudodifferential operator into its τ ′-symbol.

As already mentioned, in the general literature on twisted crossed product C∗-
algebras only the special case τ = 0 is considered. However, in order to make the
connection with the usual Weyl calculus on the group Rd, the special choice τ = 1

2
1

had to be considered, and this is the reason why we have introduced the larger family
τ ∈ End(G). We now support the assertion that the choice of the parameter τ is in
fact a matter of ordering. Indeed, let us assume that the G-algebra C is unital, see
Definition 5.4.1 for the notion of G-algebra. Then any element f = 1 ⊗ b is in Cωθ,τ for

any b : Ĝ→ C with FĜ b ∈ L1(G). In addition, the operator Opλτ (1⊗b) does not depend
on τ , see formula (6.2.1). We denote it by opλ(b); its action on u ∈ H is given by

[
opλ(b)u

]
(x) =

∫
G

λ(x; y − x) [FĜ b](y − x)u(y)dy.

Finally, by considering then arbitrary element a ∈ C , simple computations for τ = 0
and τ = 1 show that Opλ0(a⊗ b) = π(a)opλ(b) and Opλ1(a⊗ b) = opλ(b)π(a), where π(a)
denotes the multiplication operator by the function a.

Extension 6.2.4. Let us stress once more that the set of functions for which the above
integrals are absolutely convergent can be rather small, and certainly too small for var-
ious applications. Several possible extensions are then possible. A first approach would
be to deal with multiplier algebras, as sketched in [MPR05, Sec. 3.3]. An approach by
duality (but in a less general framework) has been introduced in [MP04]. Alternatively,
technics involving oscillatory integrals have been discussed in [LMR10], also in the mag-
netic framework introduced in the following chapter. All these extensions allow us to
consider the expressions introduced in this chapter for a much larger class of symbols.
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